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From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Background on Magnetic Resonance Imaging (1/5)

MRI is a non-invasive imaging modality to probe
water molecules.

• Strong, static, homogeneous magnet (1.5
to 3T in hospitals, 7T and soon 11.7T at
NeuroSpin).

• A Radio-frequency (RF) pulse to excite the
spins.

• Receiving coils.
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Background on Magnetic Resonance Imaging (2/5)

• Primary magnetic field (B0). Align the
spins in the z-direction

• Tip the global magnetization into the
transverse (x,y) plane using a RF pulse
at Larmor frequency ω0 = γB0.

• Release the RF pulse and measure
transverse relaxation.

• Gradient magnets. Localize the MR
signal.
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Background on Magnetic Resonance Imaging (3/5)

Aquisitions are performed in the Fourier domain (k-space):

Figure: Left: 2D slice of MRI brain in the Fourier domain (k-space). Right: 2D slice of MRI brain
in the image domain.
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Background on Magnetic Resonance Imaging (4/5)

Mathematical modelling
Let s : [0,T ]→ Rd , (d = 2, 3) denote the sampling curve. We have:

s(t) = s(0) + γ

∫ t

0
g(τ)dτ with g = (gx , gy ).

Figure: Pulse sequence and corresponding sampling trajectory.
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Background on Magnetic Resonance Imaging (5/5)

The gradient encoding g should satisfy:

‖g‖∞ ≤ Gmax and ‖ġ‖∞ ≤ Smax.

Admissible sampling curves
An admissible sampling curve in MRI is a curve belonging to the set:

SMRI =
{
s : [0,T ] 7→ R3, ‖ṡ‖∞6 α, ‖s̈‖∞6 β

}
Similar to driving a car on the Fourier plane.
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Goals of this thesis (1/2)

Reducing scanning time

• Improve patient comfort.

• Reduce distortions due to patient moves.

• Reduce geometric distortions by decreasing readout times.

• Reducing scanning costs.

• Improve either spatial, temporal or angular resolution (MRI/fMRI/dw-MRI).
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Goals of this thesis (2/2)

Let ρ : [0, 1]d → C be an image and ρ̂ denote its Fourier transform.

Our objective: reconstruct ρ̃ such that ‖ρ− ρ̃‖2 ≤ ε
Minimize Tε under the constraint that there exists g : [0,Tε]→ Rd s.t.

• g and g ′ are uniformly bounded.

• Sampling the curve s(t) = s(0) +
∫ t

0 g(t)dt generates a set

E(s) = {ρ̂(s(k∆t))}k∈{0,...,Tε/(∆t)}

that allows reconstructing ρ̃ with precision ε.

Questions...

• How to choose the measurements?

• How to find s?

• How to reconstruct ρ̃ knowing E(s)?
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Outline

From Compressed Sensing to Variable Density Sampling.
The sampling density
Definition of Variable Density Sampling

The study of two continuous VDS
Compressed sensing with Markov chains
TSP-based variable density sampling
A projection operator

A projection problem on measure sets
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Reducing the number of measurements using CS (1/3)
Compressed sensing theory:

• ρ is sparse in a given basis (e.g. wavelets), ρ = Ψx , where x ∈ Cn is s-sparse.

• Acquisition matrix: A = F∗Ψ.

Let x ∈ Cn denote an s-sparse representation of the image.
Let Γ ⊆ {1, · · · , n} and AΓ = (a∗i )i∈Γ. We acquire a measurement vector:

y = AΓx .

x ρ = Ψx F∗Ψx = Ax AΓx

`1 reconstruction (promoting sparsity)

min
z∈Cn,AΓz=y

‖z‖1.
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Reducing the number of measurements using CS (2/3)

A first CS theorem [Candès and Plan, 2011]

Theorem
Construct Γ by uniform and i.i.d. drawing the lines of A.
Let x be a sparse vector, containing s non-zero entries. Assume that:

m > C · s ·
(
n · max

16k6n
‖ak‖2

∞

)
· log

(
n

η

)
(1)

where C is a universal constant. Then, with probability 1− η, x is the unique solution
of:

min
z∈Cn,AΓz=y

‖z‖1.

In MRI, max
16k6n

‖ak‖2
∞ = O(1), hence m� n.

This is called the coherence barrier
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Reducing the number of measurements using CS (3/3)

Breaking the coherence barrier

• Change the acquisition model using tailored RF pulse:
• Compressed Sensing with random encoding [Haldar et al., 2011].
• Spread Spectrum MRI [Puy et al., 2012].

• Variable density sampling: draw with higher probability the measurements
corresponding to coherent vectors.
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Variable Density Sampling - Theoretical Foundations (1/3)

Theorem [Chauffert et al., 2013]
Let x be an arbitrary s-sparse vector. Let (Jk )k∈{1,...,m} denote a sequence of i.i.d.
random variables taking value i ∈ {1, . . . , n} with probability pi . Generate a random
set Γ = {J1, . . . , Jm} and measure y = AΓx . Take η ∈]0, 1[ and assume that:

m > C · s · max
k∈{1,...,n}

‖ak‖2
∞

pk
ln

(
n

η

)
where C is a universal constant. Then with probability 1− η vector x is the unique
solution of the following problem:

min
z∈Cn,AΓz=y

‖z‖1.

Optimal distribution πk ∝ ‖ak‖2
∞.

Coherence is now max
k∈{1,...,n}

‖ak‖2
∞

pk
=
∑
k

‖ak‖2
∞ = O(log(n)) in MRI.
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Variable Density Sampling - Theoretical Foundations (2/3)

Illustration of optimal sampling strategy for A = F ∗Ψ (MRI)

π in 2D π in 3D

Example of sampling pattern obtained in 2D :
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Variable Density Sampling - Theoretical Foundations (3/3)

• Recent results take the signal structure into account
[Adcock et al., 2013, Boyer et al., 2015].

• To date, the best sampling distributions are heuristics [Chauffert et al., 2014a].

• From now on, π designs a target sampling distribution.

Figure: Example of sampling pattern obtained with CS theory
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CS-MRI today

This is NOT feasible ! (s /∈ SMRI)

CS-MRI is sub-optimal ! [Lustig et al., 2007]
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Variable Density Sampling - Definitions

Pushforward measure - illustration
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Variable Density Sampling - Definitions

Pushforward measure - illustration

B
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Variable Density Sampling - Definitions

Pushforward measure - illustration

B

ν(B) = s∗λT (B) = λT (s−1(T ))

λT is the (normalized) Lebesgue measure.
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Variable Density Sampling - Definitions

Pushforward measure
Let Ω = [0, 1]d , where d = 2 or 3 denote the space dimension. We equip Ω with the
Borel algebra B. Let (X ,Σ) be a measurable space and s : X → Ω be a measurable
mapping. µ : X → [0; +∞[ denote a measure. The pushforward measure ν of µ is
defined by:

ν(B) = s∗µ(B) = µ(s−1(B)), ∀B ∈ B

Ex. 1: Measures supported by curves

Ex. 2: Atomic measures
s : {1, . . . ,m} → Ω, where s(i) = pi denotes the i-th point. Set µ as the counting

measure defined for any set I ⊆ {1, . . . ,m} by µ(I ) = |I |
m

. Then ν is defined by

ν =
1

m

m∑
i=1

δpi .
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Variable Density Sampling - Definitions

Weak convergence
A sequence of measures (µn) is said to weakly converge to µ, if for any bounded
continuous function Φ, ∫

Ω
Φ(x)dµn(x)→

∫
Ω

Φ(x)dµ(x)

Shorthand notation: µn ⇀ µ.

Variable density sampler
A sequence of (random) trajectories sn : Xn → Ω is said to be a π-Variable Density
Sampler if

sn∗µ ⇀ π almost surely

Examples
i.i.d. drawing, random walks ...
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Construction of a discrete Markov chain
Given a target probability distribution π ∈ Rn.
Define a Markov chain X = (Xi )i∈N on the set {1, . . . , n}. Use the Metropolis
algorithm to construct a stochastic transition matrix P ∈ Rn×n such that π is the
stationary distribution of X .

Figure: Authorized transitions to enforce continuity.
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CS results

Theorem [Chauffert et al., 2015]
Let x be an s-sparse random vector.
Let Γ = X1, . . . ,Xm denote a set of m indexes selected using a Markov chain. Assume
that X1 ∼ π. Then, if

m ≥
C

ε(P)
· s ·

(∑
k

‖ak‖2
∞

)
log2

(
6n

η

)
,

every s-sparse vectors are recovered exactly by solving the `1 minimization problem for
matrix AΓ with probability 1− η.
ε(P): spectral gap of the chain (difference between the largest and the second largest
eigenvalues of P).
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Sampling with random walks

A practical example (20% measurements, PSNR=30dB)

• Time to cover the k-space is slow (controlled by ε(P))

• Local approach

22



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Sampling with random walks

A practical example (20% measurements, PSNR=30dB)

• Time to cover the k-space is slow (controlled by ε(P))

• Local approach

22



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Travelling Salesman Problem (TSP) sampling

Idea : cover the k-space more quickly with a global approach.

(a) (b) PSNR=24.1dB

• Pushforward measure far from π. From which distribution should we sample the
initial points to reach a given target distribution?
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The Travelling Salesman sampler

• Let

q =
πd/(d−1)∫
Ω π

d/(d−1)

• (xi )i∈N∗ a sequence of points in Ω, i.i.d. drawn ∼ q.

• XN = (xi )i6N .

• Denote T (XN) the length of the TSP amongst XN .

• γN : [0,T (XN)]→ Ω denotes the parametrization of the curve at speed 1.

Theorem (TSP is a VDS [Chauffert et al., 2014a])
Almost surely w.r.t. the law q⊗N of the sequence (xi )i∈N∗ of random points in the
hypercube, (γN)N∈N is a π-variable density sampler, i.e.,

γN∗λT (XN ) ⇀ π

24
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The Travelling Salesman sampler - illustration

π π - based TSP π2 - based TSP
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The Travelling Salesman Sampler - Illustration

Figure: 3D reconstruction results for r = 8.8 for various sampling strategies. Top row:
TSP-based sampling schemes (PSNR=42.1 dB). Bottom row: 2D random drawing and
acquisitions along parallel lines [Lustig et al., 2007] (PSNR=40.1 dB).
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The Parameterization Problem

Finding a parameterization in SMRI corresponding to a curve support is not easy !

• Classical approach, find an admissible parameterization
[Hargreaves et al., 2004, Lustig et al., 2008]:

• Projection onto SMRI [Chauffert et al., 2014b]
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The projection operator

For an input parameterized curve c : [0;T ]→ Ω, define:

PSMRI
(c) = Argmin

s∈SMRI

∫
t∈[0;T ]

(s(t)− c(t))2dt

Main properties [Chauffert et al., 2014b]

• Fast resolution using accelerated proximal gradient descent on the dual.

• The sampling time is fixed (equal to T ).

• The sampling distribution is well preserved (approximation of Wasserstein
distance W2).

⇒ More importantly, PSMRI
is the cornerstone of a global approach, described in part

3.

28



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

The projection operator

For an input parameterized curve c : [0;T ]→ Ω, define:

PSMRI
(c) = Argmin

s∈SMRI

∫
t∈[0;T ]

(s(t)− c(t))2dt

Main properties [Chauffert et al., 2014b]

• Fast resolution using accelerated proximal gradient descent on the dual.

• The sampling time is fixed (equal to T ).

• The sampling distribution is well preserved (approximation of Wasserstein
distance W2).

⇒ More importantly, PSMRI
is the cornerstone of a global approach, described in part

3.

28



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Application to classical MRI trajectories

EPI trajectories

T=89.6 ms T=68.9 ms

• Resolution is 128× 128 (2 mm istropic).

• Very high ky frequencies are not acquired after projection.

• Reconstruction results are similar.
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Interim summary

• 2 key properties for a VDS:
• sampling distribution;
• fast k-space coverage.

• Sub-optimal 2-step approaches (random walks/TSP + projection).

How to design feasible sampling trajectories with good coverage speed and good
sampling distribution?

30



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Interim summary

• 2 key properties for a VDS:
• sampling distribution;
• fast k-space coverage.

• Sub-optimal 2-step approaches (random walks/TSP + projection).

How to design feasible sampling trajectories with good coverage speed and good
sampling distribution?

30



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Outline

From Compressed Sensing to Variable Density Sampling.
The sampling density
Definition of Variable Density Sampling

The study of two continuous VDS
Compressed sensing with Markov chains
TSP-based variable density sampling
A projection operator

A projection problem on measure sets
Problem formulation
Application to MRI



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Introduction of a new metric
Useful to compare parameterizations and (probability) distributions.
Here : s : {1, . . . ,m} → Ω and π : Ω→ R a distribution.

“s” π

h ? s h ? π

h: a Gaussian kernel.

Related to dithering problem [Teuber et al., 2011].
31
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A projection problem

Working with measures
Let P denote a set of admissible parameterizations and M(P) the set of pushforward
measures associated with elements of P: Sampling trajectories s ∈ P → Ω are seen
through s∗µ ∈M(P).

M(P) = {ν = s∗µ, s ∈ P} .

m-point measures:
Set of sums of m Dirac delta functions: M(Ωm) =

{
ν = 1

m

∑m
i=1 δpi , pi ∈ Ω

}
.

Admissible curves for MRI:

M(SMRI) = {ν = s∗µ, s ∈ SMRI}.

We want ν ∈M(P) to be “as close as possible to” π, the target distribution.

32



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Measuring distances between measures

Constructing a metric
Let π denote the target density.
Let ν denote the pushforward measure.

Let h : Ω→ R denote a continuous function with a Fourier series that does not
vanish. The following mapping:

dist(π, ν) = ‖h ? (π − ν)‖2
2

defines a distance (or metric) on M∆, the space of probability measures on Ω.
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Properties of the projection problem

Goal: solve numerically, for arbitrary M(P):

inf
ν∈M(P)

dist(π, ν)

Theorem

• If P = Ωm, the sequence of solutions νm ⇀ π.

• If P = SMRI, the sequence of solutions νT ⇀ π.
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Numerical implementation

The general construction (similar to finite elements)

• Approximate M(P) by a subset Np ⊂ Ωp of n-point measures:

Np =M(Qp) =

{
ν =

1

p

p∑
i=1

δqi , for q = (qi )1≤i≤p ∈ Qp

}
,

where Qp is the discretized version of P.

• Use a projected gradient descent to obtain an approximate projection ν∗p on Np :

ν∗p ∈ Argmin
ν∈Np

1

2
‖h ? (ν − π)‖2

2 ,

• Reconstruct an approximation ν ∈M(P) from ν∗p .
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Numerical Resolution

Variational formulation:

min
ν∈Np

1

2
‖h ? (ν − π)‖2

2 =

min
q∈Qp

J(q) =
1

2

p∑
i=1

p∑
j=1

H(qi − qj )︸ ︷︷ ︸
Repulsion potential

−
p∑

i=1

∫
Ω
H(x − qi )dπ(x)

︸ ︷︷ ︸
Attraction potential

,

where H is defined by Ĥ(ξ) = |ĥ|2(ξ).

• Repulsion potential: fast k-space coverage

• Attraction potential: right target density π

• Generalization of Poisson disk sampling
strategy [Bridson, 2007, Vasanawala et al., 2011]
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Numerical Resolution

Projected gradient descents in the non-convex case
Assume that H is differentiable with L-Lipschitz continuous gradient. Consider the
following algorithm:

q(k+1) ∈ PQp

(
q(k) − τ∇J(q(k))

)
.

The sequence (q(k))k converges to a critical point of the functional
J.[Attouch et al., 2013].

Remark

In MRI, PQp = PSMRI
!
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Example

π = Mona Lisa.
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Example

Representation of Mona Lisa by an element of SMRI.
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Application to MRI

Parameters:

• Image size: n = 256× 256 (resolution: 1 mm isotropic).

• m = n/4 decomposed in two segments of 8,192 samples each to make each
trajectory shorter than 200 ms (164 ms).

• If sampling time is too large, multi-shot or segmented trajectories might be
necessary.
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Standard resolution imaging: sampling patterns (1/2)

(a) (b) (c)

Figure: Classical sampling schemes (a-c). Top row: (a): independent drawing; (b): radial lines ;
(c): spiral trajectory. Second row: zooms on the k-space centers.
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Standard resolution imaging: sampling patterns (1/2)

(d) (e)

Figure: Sampling schemes obtained with the proposed projection algorithm (d-f). Top row: (d):
isolated points; (e): admissible curves for MRI. Bottom row: zooms on the k-space center.

41



From Compressed Sensing to Variable Density Sampling. The study of two continuous VDS A projection problem on measure sets Conclusions

Standard resolution imaging: Reconstructed images
(a) SNR=17.7 dB (b) SNR=15.4 dB (c) SNR=13.2 dB

(i.i.d.) (radial) (spiral)

(d) SNR=18.3 dB (e) SNR=18.0 dB

(m-points measure) (admissible curve for MRI)

Figure: Reconstruction results for the sampling patterns presented.
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Very high-resolution imaging

Parameters:
Image size: n = 2048× 2048 (resolution: 100 µm isotropic). m = 0.048n decomposed
in:

• 196 radial lines of 1,024 equispaced samples;

• 8 rotated versions of the same spiral made up by 25,000 samples.

• 8 curves of 25,000 samples each.
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Very-high resolution imaging: Competing trajectories (1/2)
zo

o
m

?

(a) (b) (c)

Figure: Standard sampling schemes composed of 200,000 samples. (a): i.i.d. drawings. (b):
Radial lines. (c): 4 interleaved spirals.
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Very-high resolution imaging: Competing trajectories (2/2)

zo
o

m

?

(d) (e)

Figure: Sampling schemes yielded by our algorithm and composed of 200,000 samples. (d):
Isolated measurements. (e): 4 feasible curves in MRI.
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Very-high resolution imaging: Reconstructed images (1/2)

(a) SNR=26.7 dB (b) SNR=20.6 dB (c) SNR=21.0 dB

(i.i.d.) (radial) (spiral)
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Very-high resolution imaging: Reconstructed images (2/2)

(d) SNR=27.0 dB (e) SNR=23.5 dB

(m-points measure) (admissible curve for MRI)
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Interim summary

• A global approach by projection on measure sets.

• A convergent projection algorithm for computing local minimizer.

• The method is generic enough to include additional constraints (e.g., multishot).
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Conclusion & Outlook (1/2)

Theoretical contributions

• Identification of CS-MRI questions and mathematical formalism of VDS.

• Demonstration of key properties of a VDS with 3 independent contributions:
• closed form of “optimal sampling distribution” for MRI.
• CS result for Random walks.
• TSP sampling with guarantees on the distribution.

• A projection algorithm onto the set of MRI kinematics constraints.

• A measure projection algorithm with several potential applications.

Theoretical outlook

• Fill the gap between heuristic and optimal sampling distributions.

• Obtain theoretical guarantees in Compressed Sensing for trajectories obtained by
measure projection...
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Conclusion & Outlook (2/2)

Promising results on simulations

• 3D continuous CS-MRI outperforms classical 3D CS-MRI.

• On 2D simulations, curves obtained by projection provide better results compared
to spiral or radial by at least 3 dB.

Outlook

• Design 3D trajectories by projection.

• Better manage MRI constraints such as off-resonance effects. Adapt the
parameters to different imaging modalities.

• Manage discrepency between prescribed and actual trajectory.

• Implement MR sequences on a 7T scanner at NeuroSpin (PhD thesis of C.
Lazarus beginning in 2015).
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Codes

• Matlab codes for Cartesian CS-MRI in 2D and 3D, including TSP sampling.

• Toolbox for curve projection.

Journal publications (+ 6 conference papers)

• Variable density sampling with continuous trajectories. N. C., P. Ciuciu, J.
Kahn and P. Weiss, SIAM Journal on Imaging Science, Vol. 7, Issue 4, pp.
1962–1992 (2014).

• A projection algorithm for gradient waveforms design in Magnetic Resonance
Imaging. N. C, P. Weiss, J. Kahn and P. Ciuciu. In revision in IEEE Transactions
on Medical Imaging

• A projection method on measures sets. N. C., P. Ciuciu, J. Kahn and P. Weiss
(2015). Submitted à Constructive Approximation (2015)

• On the generation of sampling schemes for Magnetic Resonance Imaging. C.
Boyer, N. C., P. Ciuciu, J. Kahn, P. Weiss (2015). Submitted soon.

• A concentration inequality for matrix-valued Markov chains. In preparation
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Thanks
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And to Benoit Larrat, Sebastien Mériaux, Alexandre Vignaud...
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Projection of videos - “π(t)” distribution
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Projection of videos - projection on the set of 1000-point measures
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Projection of videos - projection on a set of admissible curves
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From Meisje met de Parel (Vermeer, 1665) to ...
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Thank you for your attention !

Questions ?
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Supplementary material
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The key ingredient of the proof

G a finite graph with N vertices and (Xn) an irreducible and reversible Markov chain
(Xn) on G. P its transition matrix with stationary distribution π. f : G → Hd , the set
of Hermitian matrices of size d × d . Assume that X1 ∼ q and that:∑

y∈G
π(y)f (y) = 0 and λmax(f (y)) 6 R, ∀y ∈ G.

Define :

σ2
n := n · λmax

(∑
y∈G

π(y)f (y)2
)

Then, for all t > 0,

P

(
λmax

(
n∑

i=1

f (Xi )

)
> t

)
6 d · sup(

qi

πi
) · exp

(
−

ε(P)t2

4σ2
n + 2Rtε(P)/3

)
.
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The Travelling Salesman sampler intuition

Let q be the distribution of the “cities”.

Intuition
Consider a small hypercube:

• The number of point n is ∝ q;

• The typical distance is proportional to n−1/d (or q−1/d );

• ⇒ The length of the TSP in the small cube is ∝ qq−1/d = q(d−1)/d

Conclusion
To reach a target density p, one should choose q ∝ pd/(d−1)!
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