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A projection algorithm for gradient waveforms
design in Magnetic Resonance Imaging
Nicolas Chauffert, Pierre Weiss, Jonas Kahn and Philippe Ciuciu Senior Member

Abstract— Collecting the maximal amount of useful informa-
tion in a given scanning time is a major concern in Magnetic
Resonance Imaging (MRI) to speed up image acquisition. The
hardware constraints (gradient magnitude, slew rate, ...), physical
distortions (e.g., off-resonance effects) and sampling theorems
(Shannon, compressed sensing) must be taken into account
simultaneously, which makes this problem extremely challenging.
To date, the main approach to design gradient waveform has
consisted of selecting an initial shape (e.g. spiral, radial lines,
...) and then traversing it as fast as possible. In this paper, we
propose an alternative solution: instead of reparameterizing an
initial trajectory, we propose to project it onto the convex set of
admissible curves. This method has various advantages. First, it
better preserves the density of the input curve which is critical in
sampling theory. Second, it allows to smooth high curvature areas
making the acquisition time shorter in some cases. We develop
an efficient iterative algorithm based on convex programming
and propose comparisons between the two approaches. For
piecewise linear trajectories, our approach generates a gain of
scanning time ranging from 20% (echo planar imaging) to 300%
(travelling salesman problem) without degrading image quality
in terms of signal-to-noise ratio (SNR). For smoother trajectories
such as spirals, our method better preserves the sampling density
of the input curve, making the sampling pattern relevant for
compressed sensing, contrarily to the reparameterization based
approaches.

Index Terms—gradient waveform design, k-space trajectories,
variable density sampling, gradient hardware constraints, mag-
netic resonance imaging.

I. INTRODUCTION

THE advent of new hardware and sampling theories (e.g.,
Compressed Sensing or CS) provide unprecedented op-

portunities to reduce acquisition times in MRI. The design
of gradient waveforms minimizing the acquisition time while
providing enough information to reconstruct distortion-free
images is however an important challenge. Ideally, these two
concerns (sampling scheme and gradient waveform design)
should be addressed simultaneously, but current theoretical re-
sults in sampling theories (either Shannon-based or CS-based)
do not permit to incorporate complex physical constraints like
the starting position or the traversal speed in k-space, despite
recent progresses [1–4]

To date, the most widespread technique therefore consists
of designing gradient waveforms sequentially: a first step aims
to find the trajectory support or at least control points, and
a second step essentially builds the gradient waveforms to
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traverse this support or linking these control points. The first
step either relies on Shannon sampling theorem [3, 4] or on
the concept of variable density sampling (VDS) [1, 5, 6]. In
Shannon theory, the samples located in the k-space should
lie on a Cartesian grid with a sufficiently small grid step
size. A typical instance of such schemes is the echo planar
imaging (EPI) trajectory. The wealth of trajectories in VDS is
constantly increasing and becomes more and more anchored
in theory. It initially started with spirals [7, 8] and was pro-
gressively enriched with different patterns such as parallel or
radial lines [9, 10], noisy spirals [11], Rosette trajectories [12],
shell trajectories [13], ... The second step is currently solved
by using reparameterization: the goal is to find a feasible
waveform traversing the support in the minimum amount of
time. This problem can be solved using optimal control [14],
convex optimization [15, 16], or optimal interpolation of k-
space control points [17]. These simple principles however
suffer from potentially severe drawbacks. First, reparameter-
izing the curve changes the density of samples along the curve.
This density is now known to be a key aspect in CS [1,
5, 6, 18], since it directly impacts the number of required
measurements to ensure exact recovery (noiseless case) or
accurate (noisy case) reconstruction. Second, the challenge
of rapid acquisitions is to reduce the scanning time (echo
train duration) and limit geometric distortions induced by
inhomogeneities of the static magnetic field (B0) by covering
the k-space as fast as possible. The perfect fit to any arbitrary
curve (support constraint) may be time consuming, especially
in the high curvature parts of the trajectory. In particular, the
time to traverse piecewise linear trajectories [1, 19–22] may
become too long. Indeed, the magnetic field gradients have
to be set to zero at each singular point of such trajectory. To
overcome these two limitations, new gradient waveform design
methods have to be pushed forward.

A. Contributions

In this paper, we propose an alternative to reparameteriza-
tion based on a convex optimization formulation. Given any
parameterized curve, our algorithm returns the closest curve
that fulfills the gradient constraints. The main advantages of
the proposed approach are the following: i) the time to traverse
the k-space is fixed enabling to find the closest curve in a
given time, ii) the distance between the input and output curves
is the quantity to be minimized ensuring a low deviation to
the original sampling distribution, iii) it is flexible enough to
handle additional hardware constraints (e.g., trajectory starting
from the k-space center, different kinematic constraints,...)
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in the same framework. We propose an efficient first order
dual algorithm to solve the resulting problem and provide
theoretical guarantees in terms of convergence rate. We also
demonstrate through theory and numerical experiments that
the distortion to the initial density is minimized compared to
the reparameterization approach. We eventually illustrate the
performances of our approach on simulations.

B. Paper organization

In Section II, we review the formulation of MRI acquisition,
by recalling the gradient constraints and introducing the pro-
jection problem. Then, in Section III, it is shown that curves
generated by the proposed strategy (initial parameterization
followed by the projection onto the set of physical constraints)
may be used to design MRI sampling schemes with locally
variable densities. In Section IV, we provide an optimization
algorithm to solve the projection problem, and estimate its
rate of convergence. Next, the behavior of our algorithm is
illustrated in Section V on three complementary cases: one
popular sampling scheme, namely EPI trajectory and two VDS
strategies (travelling salesman problem or TSP-based curves
and spirals), yet advertising the usefulness of the proposed
approach for practical MRI applications. The pros and cons
of our method are discussed in Section VI and concluding
remarks are drawn in Section VII.

II. DESIGN OF k-SPACE TRAJECTORIES USING PHYSICAL
GRADIENT WAVEFORMS.

In this section, we recall the standard modeling of the
acquisition constraints in MRI [14, 16]. We justify the lack of
accuracy of current reparameterization methods in the VDS
context, and motivate the introduction of a new projection
algorithm that preserves the sampling density.

A. Sampling in MRI

In MRI, images are sampled in the k-space domain along
parameterized curves s : [0, T ] 7→ Rd where d ∈ {2, 3}
denotes the image dimensions. The i-th coordinate of s is
denoted si. Let u : Rd → C denote a d dimensional image
and û be its Fourier transform. Given an image u, a curve
s : [0, T ]→ Rd and a sampling step ∆t, the image u shall be
reconstructed using the set1:

E(u, s) =

{
û(s(j∆t)), 0 6 j 6

⌊
T

∆t

⌋}
. (1)

B. Gradient constraints

The gradient waveform associated with a curve s is defined
by g(t) = γ−1ṡ(t), where γ denotes the gyro-magnetic
ratio [16]. The gradient waveforms being obtained by ener-
gizing orthogonal gradient coils with electric currents, they
are submitted to hardware constraints.

1For ease of presentation, we assume that the values of u in the k-space
correspond to its Fourier transform and we neglect distortions occurring in
MRI such as noise. We also neglect the energy decay due to signal relaxation.

1) kinematic constraints: Due to physical but also
safety (i.e. avoid nerve stimulation) constraints, the electric
currents passing through gradient coils have a bounded ampli-
tude and cannot vary too rapidly (slew rate). Mathematically,
these constraints read:

‖g‖ 6 Gmax and ‖ġ‖ 6 Smax

where ‖ · ‖ denotes either the `∞-norm defined by ‖f‖∞ :=
max

1≤i≤d
sup
t∈[0,T ]

|fi(t)|, or the `∞,2-norm defined by ‖f‖∞,2 :=

sup
t∈[0,T ]

( d∑
i=1

|fi(t)|2
) 1

2 . These constraints might be Rotation

Invariant (RIV) if ‖ · ‖ = ‖ · ‖∞,2 or Rotation Variant (RV)
if ‖ · ‖ = ‖ · ‖∞, depending on whether each gradient coil
is energized independently from others or not. The set of
kinematic constraints is denoted S:

S :=
{
s ∈

(
C2([0, T ])

)d
, ‖ṡ‖ 6 α, ‖s̈‖ 6 β

}
, (2)

where α = γGmax and β = γSmax.
2) Additional affine constraints: Specific MRI acquisitions

may require additional constraints, such as:

• Imposing that the trajectory starts from the k-space center
(i.e., s(0) = 0) to save time and avoid blips. The end-
point can also be specified by s(T ) = sT , if sT can be
reached during travel time T .

• In the context of multi-shot MRI acquisition, several
radio-frequency pulses are necessary to cover the whole
k-space. Hence, it makes sense to enforce the trajectory
to start from the k-space center at every TR (repetition
time)2: s(m · TR) = 0, 0 6 m 6

⌊
T
TR

⌋
.

• In addition to starting from the k-space center, one could
impose the initial speed as for instance: ṡ(0) = 0.

• To avoid artifacts due to flow motion in the object
of interest, gradient moment nulling (GMN) techniques
have been introduced in [23] for spin or gradient echo
sequences. In terms of constraints, nulling the ith moment

reads
∫ TE

t=0

tig(t)dt = 0, where TE denotes the echo

time. For example, cancelling the first-order moment
compensates the motion of spins moving with constant
speed.

Each of these constraints can be modelled by an affine
relationship. Hereafter, the set of affine constraints is denoted
by A:

A :=
{
s : [0, T ]→ Rd, A(s) = v

}
,

where v is a vector of parameters in Rp (p is the number
of additional constraints) and A is a linear mapping from the
curves space to Rp.

A sampling trajectory s : [0, T ] → Rd will be said to be
admissible if it belongs to the set S ∩A. In what follows, we
assume that this set is non-empty, i.e. S∩A 6= ∅. Moreover, we
assume, without loss of generality, that the linear constraints
are independent (otherwise some could be removed).

2corresponding to the delivery of every radio-frequency pulse.
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C. Finding an optimal reparameterization

The traditional approach to design an admissible curve
s ∈ S given an arbitrary curve c : [0, T ] → Rd consists
of finding a reparameterization p such that s = c ◦ p satisfies
the physical constraints while minimizing the acquisition time.
This problem can be cast as follows:

TRep = minT ′ such that ∃ p : [0, T ′] 7→ [0, T ], c ◦ p ∈ S.
(3)

It can be solved efficiently using optimal control [14] or
convex optimization [16]. The resulting solution s = c ◦ p
has the same support as c. This method however suffers from
an important drawback when used in the CS framework: it
does not provide any control on the density of samples along
the curve. For example, for a given curve support shown in
Fig. 1(a), we illustrate the new parameterization (keeping the
same support) and the corresponding magnetic field gradients
(see Fig. 1(b) for a discretization of the curve and (c) for the
gradient profile). We notice that the new parameterized curve
has to stop at every angular point of the trajectory, yielding
more time spent by the curve in the neighbourhood of these
points (and more points in the discretization of the curve in
Fig. 1(b)). This phenomenon is likely to modify the sampling
distribution, as illustrated in Section III.

The next part is dedicated to introducing an alternative
method relaxing the constraint of keeping the same support
as c.

D. Projection onto the set of constraints

Here, we propose to find the projection of the given input
curve c onto the set of admissible curves S:

s∗ : = argmin
s∈S∩A

1

2
d2(s, c) = argmin

s∈S∩A

1

2
‖s− c‖22 (4)

where d2(s, c) = ‖s − c‖22 :=
∫ T
t=0
‖s(t) − c(t)‖22 dt. This

method presents important differences compared to the above
mentioned optimal control approach: i) the solution s∗ and c
have different support (see Fig. 1(d)) unless c is admissible;
ii) the sets composed of the discretization of c and s∗ at a
given sampling rate are close to each other (Fig. 1(e)); iii) the
acquisition time T is fixed and equal to that of the input curve
c. Time to traverse a curve is generally different from optimal
reparameterization. In particular for piecewise linear curves, it
is generally lower (see Fig. 1(f) where T < TRep).

In the next section, we explain why the empirical distribu-
tion of the samples along the projected curve is closer to that
of points lying on the input curve. Also, we illustrate how the
parameterization can distort the sampling distribution.

III. CONTROL OF THE SAMPLING DENSITY

Recent works have emphasized the importance of the sam-
pling density [1, 5, 6, 18] in the CS-MRI framework, i.e. in
an attempt to reduce the amount of acquired data while
preserving image quality at the reconstruction step. The choice
of an accurate sampling distribution is crucial since it directly
impacts the number of required measurements [24]. In this
paper, we will denote by π a distribution defined over the

(a) (b) (c)

g
(t

)

t
(d) (e) (f)

g
(t

)

t

Fig. 1. Comparison of two methods to design gradient waveforms. Top row:
Optimal control-based parameterization [14]. (a): input curve support. (b):
discrete representation of the optimal reparameterization of the curve in S.
(c): corresponding gradient waveforms (gx, gy). Dashed lines correspond to
0 and +/- Gmax. Bottom row: Illustration of the projection algorithm. (d):
same input curve c as in (a) parameterized at maximal speed, and the support
of the projected curve s∗ onto S. (e): discrete representation of the input
and projected curves. (f): corresponding gradient waveforms (gx, gy) with
the same time scale as in (c): the time to traverse the s∗ is 39% shorter.

k-space K. The profile of this distribution can be obtained
by theoretical arguments [1, 5, 6, 18] leading to distributions
as the one depicted in Fig. 2(a). Some heuristic distributions
(e.g., radial) are known to perform well in CS-MRI experi-
ments (Fig. 2(b)). A comparison between these two approaches
can be found in [25].

(a) (b)

Fig. 2. Examples of 2D sampling distribution. (a): optimal distribution for a
Symmlet transform [1, 5]. (b): radial distribution advocated in [1, 6]: p(k) ∝
1/|k|2.

However, designing a trajectory that performs sampling
according to a fixed distribution while satisfying gradient
constraints is really challenging and has not been addressed
so far. The classical approach consists of:

1) Finding an input curve (admissible or not) c with good
distribution; We provide various strategies to achieve this
step in Appendix A-B.

2) Estimating the fastest reparameterization of c that belongs
to the set of constraints.

In this paper, we suggest to replace the second step by:
2’) Estimating s∗ the projection of c onto the set of con-

straints, by solving Eq. (4).
We show that step 2’) is preferable to step 2) since it better
preserves the sampling density (or empirical measure). We
begin by showing it through a theoretical study in paragraph
III-A and then validate it through numerical experiments
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in paragraph III-B. The reader not interested by theoretical
arguments can go directly to Subsection III-B.

A. Theoretical study of the density control

To formalize the notion of density, we need to introduce the
definition of the empirical distribution of a curve.

Definition 1 (Empirical measure of a curve). Let λ denote the
Lebesgue measure and λT = λ

T denote the Lebesgue measure
normalized on the interval [0, T ]. The empirical measure of a
curve s : [0, T ] 7→ K ⊆ Rd is defined for any measurable set
ω of K as:

Ps(ω) = λT (s−1(ω)).

This definition means that the mass of a set ω is proportional
to the time spent by the curve in ω.

To measure the distortion between an input curve and the
projected one, we need to design a distance between measures.
In this work, we propose to use the Wasserstein distance W2

defined hereafter:

Definition 2 (Wasserstein distance W2). Let M be a domain
of Rd and P(M) be the set of measures over M . For µ, ν ∈
P(M), W2 is defined as:

W2(µ, ν) =

(
inf

σ∈Π(µ,ν)

∫
‖x− y‖22dσ(x, y)

) 1
2

(5)

where Π ⊂ P(M ×M) denote the set of measures over M ×
M with marginals µ and ν on the first and second factors,
respectively.

W2 is a distance over P(M) (see e.g., [26]). Intuitively, if µ
and ν are seen as mountains, the distance is the minimum cost
of moving the mountains of µ into the mountains of ν, where
the cost is the `2-distance of transportation multiplied by the
mass moved. Hence, the coupling σ encodes the deformation
map to turn one distribution (µ) into the other (ν).

Let us now analyze the distortion between the empirical
distribution of the projected curve Ps∗ and the target distribu-
tion π. Since W2 is a distance between measures, the triangle
inequality holds:

W2(Ps∗ , π) 6 W2(Pc, π)︸ ︷︷ ︸
Initial distortion

+ W2(Ps∗ , Pc)︸ ︷︷ ︸
Projection distortion

. (6)

The deviation is controlled by two terms: the initial dis-
tortion term W2(Pc, π) and the projection distortion term
W2(Ps∗ , Pc). The first term depends of the choice of the input
curve c. This choice is crucial but is out the scope of this paper
since it is not directly related to gradient waveform design.
We still show in Appendix A that this term can be controlled
precisely in a few cases of interest (spiral, TSP).

We are now interested in controlling the Projection distor-
tion term W2(Ps∗ , Pc). The following proposition shows that
the W2 distance between the empirical distributions of the
input and output curves (c and s∗, respectively) is controlled
by the quantity d(s∗, c) to be minimized when solving Eq. (4).

Proposition 1. For any two curves s and c : [0, T ]→ Rd:

W2(Ps, Pc) 6 d(s, c).

Proof. In terms of distributions, the quantity d(s, c) reads:

d2(s, c) =

∫
M×M

‖x− y‖22dσs,c(x, y) (7)

where σs,c is the coupling between the empirical measures Ps
and Pc defined for all couples of measure sets (ω1, ω2) ∈M2

by σs,c(ω1, ω2) =
1

T

∫ T

t=0

1ω1
(s(t))1ω2

(c(t))dt, where 1ω

denote the indicator function of ω. The choice of this cou-
pling is equivalent to choosing the transformation map as the
association of locations of c(t) and s(t) for every t. We notice
that the quantity to be minimized in Eq. (7) is an upper bound
of W2(Ps, Pc)

2, with the specific coupling σs,c.

To sum up, solving the projection problem (4) and finding
s∗ amounts to minimizing an upper-bound of W2(Ps∗ , π),
the Wasserstein distance between the target density π and
the empirical distribution Ps∗ , if we neglect the influence of
the initial parameterization c. In some sense, our projection
algorithm is therefore the best way to obtain a feasible curve
and to preserve the input curve empirical measure. As will be
seen in the next paragraph, densities are indeed much better
preserved using projections than reparameterizations.

B. Numerical study of the density control

Next, we performed simulations to show that the sampling
density is better preserved using our algorithm compared to
the optimal control approach. For doing so, we use travelling
salesman-based (TSP) sampling trajectories [1, 20], which are
an original way to design random trajectories which empirical
distribution is any target density π such as the one represented
in Fig. 2(a). 10, 000 such independent TSP were drawn and
parameterized with arc-length: note that these parameteriza-
tions are not admissible in general. Then, we sampled each
trajectory at constant rate ∆t (as in Fig. 3 (top-row, left)), to
form an histogram depicting the empirical distribution shown
in Fig. 3 (top-row, center). The latter was eventually compared
to π in Fig. 3 (top-row, right). It is worth noting that the error
was actually not close to zero, since the convergence result
enounced in [1] is asymptotic, i.e. when the length of the TSP
curve tends to infinity whereas the latter remains bounded in
this experiment.

In Fig. 3 (second row), we show that the classical
reparameterization technique [14] leads to a major distortion of
the sampling density, because of its behavior on the angular
points already illustrated in Fig. 1(b). Then, we considered
three constant speed parameterizations and projected them
onto the same set of constraints (Gmax = 40 mT.m−1

and Smax = 150 mT.m−1.ms−1). Among these three initial
candidates, we started by using an initial parameterization
with low velocity (10 % of the maximal speed γGmax with
γ = 42.576 MHz.T−1 for proton imaging), which projection
fits the sampling density quite well. Then, we increased the
velocity to progressively reach 50 % and even 100 % of
the maximal speed. The distortion of the sampling density
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Fig. 3. Illustration of TSP trajectories traversed with arc-length parameter-
ization (top row), optimal control (second row) and with our projection
algorithm (rows 3-5). Columns represent the k-space trajectory (left), the
empirical distribution P (center) and the difference with the target distribution
π shown in Fig. 2(a) (right). At the bottom, the relative error ‖P−π‖2/‖π‖2
between the two is reported.

of the projected curve increased, but remained negligible in
contrast to what we observed for the exact reparameterization.
Hence, this example illustrates that starting from a continuous
trajectory whose an empirical sampling distribution is close to
the target π, our projection algorithm yields feasible gradient
waveforms while sampling the k-space along a discretized
trajectory whose empirical density is close to π too.

IV. FINDING FEASIBLE WAVEFORMS USING CONVEX
OPTIMIZATION

Since the set of constraints S∩A is convex, closed and non-
empty, Problem (4) always admits a unique solution. Even

though S has a rather simple structure3, it is unlikely that
an explicit solution to Problem (4) can be found. In what
follows, we thus propose a numerical algorithm to compute
the projection.

Problem discretization: A discrete-time curve s is defined
as a vector in Rn·d where n is the number of time points. Let
s(i) ∈ Rd denote the curve location at time (i − 1)δt with
δt = T

n−1 . The discrete-time derivative ṡ ∈ Rn·d is defined
using first-order differences:

ṡ(i) =

{
0 if i = 1,
(s(i)− s(i− 1))/δt if i ∈ {2, . . . , n}.

In the discrete setting, the first-order differential operator can
be represented by a matrix Ṁ ∈ Rn·d×n·d, i.e. ṡ = Ṁs.
We define the discrete second-order differential operator by
M̈ = −Ṁ∗Ṁ ∈ Rn·d×n·d.

An efficient projection algorithm: The discrete primal prob-
lem we consider is the same as (4) except that all objects are
discretized. It reads:

min
s∈S∩A

1

2
‖s− c‖22, (P)

where S := {s ∈ Rn·d, ‖Ṁs‖ 6 α, ‖M̈s‖ 6 β} with all
norms discretized, and A are the discrete counterparts of S
and A, respectively. Next, the main idea is to take advantage
of the structure of the dual problem of P to design an efficient
projection algorithm. The following proposition specifies this
dual problem and the primal-dual relationships.

Proposition 2. Let ‖q‖∗ := sup
‖s‖≤1

〈s, q〉 denote the dual norm

of ‖ · ‖. The following equality holds:

min
s∈S∩A

1

2
‖s− c‖22 = sup

q1,q2∈Rn·d
F (q1, q2)− α‖q1‖∗ − β‖q2‖∗,

(8)

where

F (q1, q2) = min
s∈A
〈Ṁs, q1〉+ 〈M̈s, q2〉+

1

2
‖s− c‖22. (9)

Moreover, let (q∗1 , q
∗
2) denote any minimizer of the dual

problem (8), s∗ denote the unique solution of the primal
problem (??) and s∗(q∗1 , q

∗
2) denote the solution of the mini-

mization problem (9). Then s∗ = s∗(q∗1 , q
∗
2).

Proof. The proof is given in Appendix B.

The following proposition gives an explicit expression of
s∗(q∗1 , q

∗
2).

Proposition 3. The minimizer

s∗(q∗1 , q
∗
2) = arg min

s∈A
〈Ṁs, q1〉+ 〈M̈s, q2〉+

1

2
‖s− c‖22

is given by

s∗(q1, q2) = z +A+(v −Az), (10)

3it is just a polytope when the `∞-norm is used.
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where A ∈ Rp×n·d is a matrix encoding the affine constraints,
and A+ = A∗(AA∗)−1 denotes its pseudo-inverse4. In
addition, z = c− Ṁ∗q1 − M̈∗q2.

Proof. The proof is given in Appendix C.

Let us now analyse the smoothness properties of F .

Proposition 4. Function F (q1, q2) is concave differentiable
with gradient given by

∇F (q1, q2) = −
(
Ṁs∗(q1, q2)

M̈s∗(q1, q2)

)
. (11)

Moreover, the gradient mapping ∇F is Lipschitz continuous
with constant L = |||Ṁ∗Ṁ+M̈∗M̈|||, where |||M||| denotes
the spectral norm of M.

Proposition 4 is a direct application of [27, Theorem 1]
(see also [28]). The dual problem (8) has a favorable structure
for its optimization: it is the sum of a differentiable convex
function F̃ (q1, q2) = −F (q1, q2) and of a simple convex
function G(q1, q2)= α‖q1‖∗+β‖q2‖∗. The sum F̃+G can thus
be minimized efficiently using accelerated proximal gradient
descents [29] (see Algorithm 1 below).

Algorithm 1: Projection algorithm in the dual space

Input: c ∈ Rn·d, α, β > 0, nit.
Output: s̃ ∈ Rn·d an approximation of the solution s∗.
Initialize q(0) = (q

(0)
1 , q

(0)
2 ) with q(0)

i = 0 for i = 1, 2.
Set y(0) = q(0).
Set ` = 1/L.
for k = 1 . . . nit do

q(k) = prox`G(y(k−1) − `∇F̃ (y(k−1)))
y(k) = q(k) + k−1

k+2 (q(k) − q(k−1))

return s̃ = s∗
(
q

(nit)
1 , q

(nit)
2

)
.

Moreover, by combining the convergence rate results of [29,
30] and some convex analysis (see Appendix D), we obtain
the following convergence rate:

Theorem 1. Algorithm 1 ensures that the distance to the
minimizer decreases as O

(
1
k2

)
:

‖s(k) − s∗‖22 ≤
2L‖q(0) − q∗‖22

k2
. (12)

V. NUMERICAL EXPERIMENTS

To compare our results with [14], we used the same gra-
dient constraints. In particular, the maximal gradient norm
Gmax was set to 40 mT.m−1, and the slew-rate Smax to
150 mT.m−1.ms−1. We assume that the constraints are Ro-
tation Invariant (RIV). The image field of view (FOV) is
assumed to be 20 cm and Kmax = N/(2 · FOV ) where
N is the target spatial grid size for image reconstruction.
The sampling rate was fixed to ∆t = 4 µs except for spiral
imaging. For the ease of trajectory representation, we limit

4Since the constraints are supposed to be linearly independent, A+ is well-
defined.

ourselves to 2D sampling curves, although our algorithm
encompasses the 3D setting.

The Matlab codes embedding the projection algorithm as
well as the scripts to reproduce the results depicted hereafter
are available at http://chauffertn.free.fr/codes.html. Hereafter,
the supplementary affine constraints (e.g., nulling moments)
are not taken into account. However, they have been imple-
mented in the code so that every end-user can play with. Sim-
ulations were performed on a Linux Ubuntu (64 bits) work-
station with an Intel Xeon(R) CPU E5-2630 v2 @2.60GHz
processor and 64 GB of RAM. The computation time required
to run the experiments range from 2 min. (EPI with 17, 225
points) to 4 min. (TSP trajectory with 45, 000 points) and the
number of iterations of Algorithm 1 to achieve convergence
was 15, 000, to satisfy ||(s(k+1) − s(k))/s(k)|| < 10−3.

To measure the impact of the proposed projection algo-
rithm and compare it with the optimal reparameterization,
we also performed image reconstruction and computed image
quality in terms of Signal-to-Noise-Ratio (SNR). To this end,
we performed simulations by starting from a high-resolution
N × N MRI phantom (N = 1024) depicted in Fig. 4.
Next, we massively undersampled its Fourier transform by
the two competing sampling strategies and analyzed image
quality after non-Cartesian reconstruction. For the sake of
self-containedness, all investigated trajectories are depicted in
Fig. 7 and quantitative results corresponding traversal times
and SNR of reconstructed images are reported in Tab. I. In

Fig. 4. MRI phantom of size N ×N (N = 1024) used for the experiments.

what follows, we first discuss the results of our method in the
context of classical (piecewise linear) EPI trajectory. Then, we
illustrate the behavior of our algorithm on two VDS: classical
spiral (smooth) trajectories and TSP-based (piecewise linear)
trajectories.

A. EPI trajectories

EPI trajectories are a classical way of probing the k-space
on a 2D-Cartesian grid. We compared a standard EPI with
ramp-sampling (a sample was measured every ∆t from t = 0
to TRep) on N = 128 lines, parameterized with optimal
control and a trajectory that traverses the k-space at constant
speed (70% of the maximal gradient intensity), projected onto
S using our algorithm.
As shown in Fig. 7 (third row), the projected trajectory has a
smaller support than standard EPI. In particular, the resolution
in the readout direction is slightly decreased. However, the
time to traverse k-space is shorter (T = 68.9 ms) using our
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Standard EPI Projected EPI
g
(t

)

g
(t

)

Fig. 5. Comparison between magnetic field gradients g = (gx, gy) during
the first 5 ms for standard EPI trajectory (left) and projected EPI (right).

algorithm as compared to the EPI trajectory (TRep = 89.6 ms).
To provide a better insight on this acceleration factor, we
depict in Fig. 5 the first 5 ms of the gradient waveforms for the
two approaches. The corresponding acquired lines are colored
in red in Fig. 7. While standard EPI is able to acquire 6.5
lines (Fig. 5-left) in this amount of time, the projected trajec-
tory achieves the extended coverage of 8.5 lines (Fig. 5-right).
Indeed, gradient blips are smoothed providing a substantial
time reduction. In terms of image quality, we observed that the
degradation of resolution along one direction has no significant
impact since the SNR of reconstructed image is higher for
the projected trajectory compared to standard EPI (Tab. I).
Hence, in the EPI context, the projection algorithm allows
us to traverse the k-space faster without degrading the image
quality.

B. Spiral trajectories

The case of spiral trajectories is more tricky as explained
below. For any radial density π, there exists a spiral that
performs k-space sampling according to π. This trajectory is
parameterized by c(t) = r(t/T ) exp(i2πnθ(t/T )) and thus
controlled by its time-varying modulus r(t) and phase θ(t)
and by the number of revolutions n ∈ R+ over the fixed
traversal time T . The relation between π and r(·) is given in
Appendix A, Eq. (14), hence the choice of r(·) determines π,
whereas θ(·) and n control the shape of the spiral. For fixed
T and r(·), finding θ(·) and n such that the spiral is optimal
in the sense that the kinematics constraints S are saturated, is
an open issue. Indeed, in the literature [31], it has been shown
that different types of gradient parameterizations may yield
different sampling patterns, hence various π. However, to the
best of our knowledge, the inverse problem which consists of
inferring the parameterization from the target density π, has
never been solved.
Here, we provide a partial solution that relies on two in-
gredients: first, setting the function r(·) according to (14)
and second choosing a constant angular speed ω such that
θ(t) = ωt. This approach actually remains suboptimal since
considering a constant ω imposes too low gradient magnitudes
at the beginning of the trajectory (i.e. for the k-space center).
The pair (ω, n) must satisfy the constraints in S. For instance,
to saturate the magnitude gradient constraint one may choose
(ω, n) such that: 2πnωKmax = γGmax.
In our experiment, we adopted this strategy for the above
defined Gmax and the selected Kmax (see Fig. 7). We also
set T = 200 ms and ∆t = 24 µs, in order to meet an

Input spiral Reparametrization Projection

|k| |k| |k|

Fig. 6. Decay of the spiral for an input spiral with density π(k) ∝ 1/|k|2.
Histogram of the values r(t) for input spiral (not admissible), optimal
reparametrization, and projection.

additional memory size constraint5. In Fig. 6, we illustrate
how the sampling density π(k) ∝ 1/|k|2 is impacted after
optimal control reparametrization whereas it is preserved when
applying our projection algorithm. The histogram peak asso-
ciated with the reparameterization is shifted to the right i.e.
towards high frequencies meaning that the low frequencies
are undersampled. This is the direct consequence of using
a too fast traversal speed (see Fig. 7: the samples of the
spiral are more spaced in the reparameterization scenario).
The traversal time of the spiral is indeed TRep = 42 ms with
reparametrization and T after projection (Tab. I). This also
explains the significant difference of image quality by almost
5 dB in favor of the projection approach.
On the contrary, if the initial parameterization is not admis-
sible (ω too large), we observed that the output trajectory
of the projection algorithm concentrates on concentric circles
corresponding to the maximal speed allowed by the gradient
magnitude constraint (results not shown). In contrast, the op-
timal reparameterization is not impacted since it only depends
on the support of the spiral. Hence, the choice of the initial
parametrization is crucial for spiral imaging, and it seems that
neither our algorithm nor reparametrization technique provides
a universal answer to the issue of spiral sampling in MRI.

C. TSP sampling

In the same spirit of Fig. 3, we performed numerical
experiments using a TSP trajectory [1, 20]. To perform a
comparison at constant traversal time, we draw two sets of
4,500 and 45,000 “cities” in order to design a short and
a long trajectory (Fig. 7 top row-right). The short curve is
traversed with optimal reparameterization in a given time
TRep = 160 ms (Fig. 7 middle row-right). The longer curve
is parameterized at constant speed such that T = TRep, that
corresponds to 25 % of the maximal speed γGmax. Then, this
parameterization is projected onto S (Fig. 7 last row).
We notice that for a fixed time, the curve obtained with
our algorithm provides a larger k-space coverage compared
to optimal reparameterization. The main reason is that TSP
trajectories embody singular points that require the gradients
to be set to zero for each of them. Therefore, a sampling
trajectory with singular points is time consuming. The main
advantage of our algorithm is that the trajectory can be
smoothed around these points, which saves a lot of acquisition
time. In terms of image quality, the main consequence is that

5the buffer size of the analog-to-digital converter is 8912 in standard MRI
scanners.
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TABLE I
COMPARISON BETWEEN TRAVERSAL TIME AND RECONSTRUCTION SNR

FOR OPTIMAL REPARAMETERIZATION AND PROJECTION

EPI Spiral TSP-based
Resolution 128 512 512
Optimal
reparam.

TRep (ms) 89.6 42.4 180
SNR (dB) 20.1 7.9 11.3

Projection T (ms) 68.9 200 180
SNR (dB) 21.4 12.7 14.5

our projection algorithm outperforms the reparameterization
approach by 3.2 dB.

This example demonstrates that existing methods do not
permit to implement TSP-based sequences in many MRI
modalities (e.g., short TE for a small number of “cities”),
since the time to collect data can be larger than any realistic
repetition time (here, the traversal time of the longer trajectory
based on optimal reparameterization would require 1.1 s). In
contrast, our method enables traversal of such curves in a
reasonable time which can be tuned according to the image
weighting (T1, T2 or proton density).

D. Nonlinear image reconstruction

To demonstrate the effectiveness of the proposed approach
not only for gradient waveform design but also for imaging,
we performed nonlinear image reconstruction as prescribed in
the CS context [9, 32]. Additionally, to fully take advantage
of the projection algorithm, our reconstruction scheme was
non-Cartesian. Hence, we used non-uniform Fourier trans-
forms [33] to compute the k-space values out of the grid (on
locations s(i), i = 1, . . . , n). For comparison purposes, we
started from a high resolution phantom u (see Fig. 4) that was
used to compute the sets E(u, sRep) and E(u, sproj). The latter
are given by Eq. (1) where sRep and sproj denote the optimal
reparameterization and projected trajectory, respectively. Next,
the images were reconstructed using non-linear `1 penaliza-
tion, i.e.:

u∗ = arg min
ũ

‖
n∑
i=1

̂(u− ũ)(s(i))‖22 + λ‖Φũ‖1 (13)

where Φ is a sparsifying transform (here Daubechies
wavelets), λ is a hyper-parameter, and s is either srep or
sproj. The minimizer of (13) was computed using accelerated
proximal gradient descent ([29], FISTA [34]). The image
solutions (u∗Rep and u∗proj) were then compared to a low
resolution version of the N × N phantom where N ranged
from 128 to 512 to compute SNR values in Tab. I. On
top of this, it is worth noting that we could still improve
the SNR of reconstructed images by resorting either to more
redundant decompositions such as tight frames [35] or even
by learning dictionaries over which the image can be sparsely
decomposed [36]. However, this aspect is beyond the scope of
our current proof of concept.

VI. DISCUSSION

In this paper, it has been shown that our projection algorithm
has potential interests for smoothing sampling curves such as

EPI or TSP-based trajectories. In this context, our algorithm
delivers physically plausible trajectories while drastically re-
ducing the traversal time and improving image quality. This
is a direct consequence of its ability to project any piecewise
linear initial parameterization onto admissible trajectories with
different support. In applications such as functional MRI, this
offers the opportunity to shorten the echo train length and then
to optimally select the effective echo time so as to maximize
the blood oxygenated level-dependent contrast (e.g., TE =
30 ms at 3T). Finally, our method can be used in addition
with other acceleration methods such as parallel imaging [37,
38] or simultaneous multi-slice imaging technique [39].

Beyond this context, our projection method provides a more
accurate control of the sampling density as shown for variable
density sampling on spirals. This has a positive impact on
image reconstruction quality at the expense of longer traversal
times. Setting a fair trade-off between image quality and
acquisition time is a usual concern in MRI that may depend
on the application at hand (e.g., static vs dynamic imaging).
Interestingly, our algorithm prescribes the acquisition time a
priori what actually provides the practitioner with an effective
control on such trade-off. As we illustrated on TSP sampling,
this acquisition time is tightly linked to sampling accuracy
with respect to the target density. Hence, our approach clearly
compensates a major drawback of reparametrization methods
that do not offer such control: the traversal time can be too
fast hence an insufficient number of data are collected (spiral
case), or too slow and not implementable (TSP-based sampling
case).

Usually in MRI acquisition, a number of trajectories are
interleaved to provide enough k-space samples. So far, we
have not demonstrate the optimization of a set of interleaves
except that the segmentation of the trajectory can directly enter
in our global optimization problem through affine constraints
if the interleaving sequence is thought of as a way of crossing
the k-space center at evenly spaced time intervals. More
generally, we can prove theoretically and practically that if the
combination of two input trajectories provides a good k-space
coverage, the combination of the two projected curves admits
the same property. The theoretical argument comes from the
following observation: if we consider two interleaves c1 and
c2 and apply our projection method by searching for s1 and
s2 from initial candidates c1 and c2 respectively, we actually
control an upper bound of W2(Ps1 , Pc1) + W2(Ps2 , Pc2).
Practical illustration of this property is available in our Matlab
toolbox.

On the other hand, our projection method has also limita-
tions. In particular, the projected trajectory strongly depends
on the initial parameterization. As we illustrated, parameter-
izing a given initial curve at different speeds provides very
different projected trajectories. This clearly calls for extensions
that might iterate until convergence between the two key
steps, namely approximating the target density and finding
an admissible trajectory from this approximation [40]. In
such generalizations, the first step can be seen as a density-
consistency stage where the sampled k-space locations might
change from one iteration to the next to fit a target density.
We believe that this idea might become the most important
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Fig. 7. Representation of input trajectory, optimal reparametrization and projection for EPI, spiral and TSP-based trajectories. The frame [−Kmax,Kmax]2

is depicted with various values of Kmax that depend on the reconstruction resolution.

aspect of our contribution in the future: projections are one
of the most basic tools from optimization and might serve in
many different contexts.

VII. CONCLUSION

We developed an algorithm to project any parameterized
curve onto the set of curves which can be implemented on
actual MRI scanners. Our method is an alternative to the
existing gradient waveform design based on optimal control.
The major advantages are that: i) the sampling time is fixed
which is crucial to adapt the proposed scheme to any MR
imaging modality; ii) the sampling density is close to the
target one, as required by compressed sensing theory; iii) the
behavior of our algorithm is similar to the state-of-the art for
smooth trajectories, but it provides shorter k-space coverage
when the trajectory comprises numerous high curvature points,
as illustrated in the TSP and EPI cases.
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APPENDIX A
DENSITY DEVIATION, CONTROL OF W2-DISTANCE.

In Section III-A, we aim at controlling the Wasserstein
distance W2(Ps∗ , π), where π is a target fixed sampling dis-
tribution, and Ps∗ is the empirical distribution of the projected
curve. We used the triangle inequlity (6) to bound this quantity
by W2(Ps∗ , Pc)+W2(Pc, π). Here, we show that the quantity
W2(Pc, π) can be as small as possible if c is Variable Density
Sampler (VDS) [1]. First, we define the concept of VDS, and
then we provide two examples. Next, we show that if c is a
VDS, W2(Pc, π) tends to 0 as the length of c tends to infinity.

A. Definition of a VDS

First, we need to introduce the definition of weak conver-
gence for measure:

Definition 3. A sequence of measures µn ∈ P(K), the set of
distributions defined over K, is said to weakly converge to µ
if for any bounded continuous function φ∫

K

φ(x)dµn(x)→
∫
K

φ(x)dµ(x).

We use the notation µn ⇀ µ.

According to [1], a (generalized) π-VDS is a set of times
Tn, such that Tn → ∞ when n → ∞, and a sequence of
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curves cTn : [0, Tn] → Rd such that PcTn ⇀ π when n
tends to infinity. A consequence of the definition is that the
relative time spent by the curve in a part of the k-space is
proportional to its density. Before showing that this implies
that W2(PcTn , π) tends to 0, we give two examples of VDS.

B. VDS examples

We give two examples to design continuous sampling trajec-
tories that match a given distribution. The two examples we
propose provide a sequence of curves, hence a sequence of
empirical measures that weakly converge to the target density.

1) Spiral sampling: The spiral-based variable density sam-
pling is now classical in MRI [31, 41]. For example, let
n ∈ R+ be the number of revolutions, r : [0, 1] 7→ R+ a
strictly increasing smooth function, and θ : [0, 1] → [0, 2π].
Denote by r−1 the inverse function of r. Define the spiral

for t ∈ [0, n] by cn(t) = r
( t
n

)
exp

(
i · n · θ

(
t

n

))
and the

target distribution π by:

π(x, y)=


.
r−1

(√
x2+y2

)
2π
∫ r(1)
r(0)

.
r−1(ρ)ρdρ

if r(0)6
√
x2+y26r(1)

0 otherwise
(14)

then Pcn ⇀ π when n tends to infinity.
2) Travelling Salesman-based sampling: The idea of using

the shortest path amongst a set of points (the “cities”) to
design continuous trajectories with variable densities has been
justified in [1, 19]. Let us draw n k-space locations uniformly
according to a density q define over the dD k-space (d = 2
or 3), and join them by the shortest path (the Travelling
Salesman solution). Then, denote by cn a constant-speed
parameterization of this curve. Define the density:

π =
q(d−1)/d∫

q(d−1)/d(x)d(x)

Then Pcn ⇀ π when the number of cities n tends to infinity.
These two sampling strategies are efficient to cover the k-

space according to target distributions, as depicted in Fig. 7(top
row) where TSP (resp. spiral) is a VDS for distribution
depicted in Fig. 2(a) (resp. (b)). For spiral sampling, the target
distribution may be any 2D radial distribution, whereas the
Travelling salesman-based sampling enable us to consider any
2D or 3D density.

C. Control of W2 distance

Let us now assume without loss of generality that K =
[−kmax, kmax]d.

Let us recall a central result about W2 (see e.g.,[26]):

Proposition 5. Let M ⊂ Rd, µ ∈ P(M) and µn be a
sequence of P(M). Then, if M is compact

µn ⇀ µ⇔W2(µn, µ)→ 0

An immediate consequence of this proposition and of the
compactness of K is the following proposition:

Proposition 6. Let (cTn)n>1 be a π-VDS, and ε > 0. Then,
there exists n > 1 such that cTn : [0, Tn]→ K fulfills:

W2(PcTn , π) 6 ε.

To sum up, Proposition 6 ensures that we can find an input
curve which empirical distribution is as close to the target
distribution π as we want.

APPENDIX B
PROOF OF PROPOSITION 2

Definition 4 (indicator function). Let B ⊆ Rn. The indicator
of B is denoted ıB and defined by:

ıB(x) =

{
0 if x ∈ B
+∞ otherwise

Let us now recall a classical result of convex optimization
[28, P. 195]:

Proposition 7. Let Bα = {x ∈ Rn, ‖x‖ 6 α}. Then the
following identity holds:

ıBα(x) = sup
y∈Rn

〈x,y〉 − α‖y‖∗.

Now, we can prove Proposition 2.

min
s∈S∩A

1

2
‖s− c‖22

= min
s∈A

1

2
‖s− c‖22 + ıBα

(Ṁs) + ıBβ
(M̈s)

= min
s∈A

1

2
‖s− c‖22 + sup

q1,q2∈Rn·d
〈Ṁs, q1〉 − α‖q1‖∗

+ 〈M̈s, q2〉 − β‖q2‖?

= sup
q1,q2∈Rn·d

min
s∈A

1

2
‖s− c‖22 + 〈s, Ṁ∗q1〉+ 〈s, M̈∗q2〉

− α‖q1‖∗ − β‖q2‖∗
The relationship between the primal and dual solutions reads

s∗ = arg min
s∈A

1

2
‖s− c‖22 + 〈s, Ṁ∗q∗1〉+ 〈s, M̈∗q∗2〉. The sup

and the min can be interverted at the third line, due to standard
theorems in convex analysis (see e.g. [42, Theorem 31.3]).

APPENDIX C
PROOF OF PROPOSITIONS 3

To show Proposition 3, first remark that

arg min
s∈A

〈Ṁs, q1〉+ 〈M̈s, q2〉+
1

2
‖s− c‖22

= arg min
s∈A

1

2
‖s− (c− Ṁq1 − M̈∗q2)‖22.

Therefore, s∗(q1, q2) is the orthogonal projection of z = c−
Ṁq1 − M̈∗q2 onto A. Since A is not empty, AA+v = v,
and the set A = {s ∈ Rn·d,As = v} can be decomposed as

A = A+v + ker(A).

The vector z − s∗(q1, q2) is orthogonal to A, it therefore
belongs to ker(A)⊥ = im(A∗). Hence s∗(q1, q2) = z+A∗λ
for some λ such that:

A(z +A∗λ) = v.
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This leads to λ = (AA∗)−1(v −Az). We finally get

s∗(q1, q2) = z +A∗(AA∗)−1(v −Az),

ending the proof.

APPENDIX D
PROOF OF THEOREM 1.

Let us first recall that the relative interior of a convex set C
ri(C) is the interior of C relative to the affine hull of C [28].
The analysis proposed to prove Theorem 1 closely follows
ideas proposed in [30, 43–45]. We will need two results. The
first one is a duality result from [44].

Proposition 8. Let f : Rm → R∪{∞} and g : Rn → R∪{∞}
denote two closed convex functions, and A ∈ Rm×n denote
a matrix. Assume that g is σ-strongly convex [28] and that
Ari(dom(f)) ∩ ri(dom(g)) 6= ∅.

Let p(x) = f(Ax)+g(x) and d(y) = −g∗(A∗y)−f∗(y).
Let x∗ be the unique minimizer of p and y∗ be any minimizer
of d.

Then g∗ is differentiable with 1
σ Lipschitz-continuous gra-

dient. Moreover, by letting x(y) = ∇g∗(−A∗y):

‖x(y)− x∗‖22 ≤
2

σ
(d(y)− d(y∗)).

The second ingredient is the standard convergence rate for
accelerated proximal gradient descents given in [30, Theo-
rem. 4.4].

Proposition 9. Under the same assumptions as Proposition 8,
consider Algorithm 2.

Algorithm 2: Accelerated proximal gradient descent
Input: q0 ∈ ri(dom(f∗)) ∩Ari(dom(g∗)) and nit
Initialize Set ` = 1/L, with L = |||A|||2

σ .
Set y0 = q0. for k = 1 . . . nit do

q(k) = prox`f∗(y(k−1) + `A∇g∗(−A∗y(k−1)))

y(k) = q(k) + k−1
k+2 (q(k) − q(k−1))

Then ‖y(nit) − y∗‖22 = O
(
|||A|||2
σ·n2

it

)
.

To conclude, it suffices to set g(s) = 1
2‖s−c‖

2
2, f(q1, q2) =

ıBα
(q1) + ıBα

(q2) and A =

(
Ṁ

M̈

)
. By doing so, the

projection problem rewrites min
s∈Rnḋ

p(s) = f(As) + g(s).

Its dual problem (8) can be rewritten more compactly as
min

q=(q1,q2)∈Rnḋ×Rnḋ
d(q) = g∗(−A∗q) + f∗(q). Note that

function g is 1-strongly convex. Therefore, Algorithm 2 can
be used to minimize d, ensuring a convergence rate in O

(
L
k2

)
on the function values d(y(k)), where L = |||A|||2. It then
suffices to use Proposition 8 to obtain a convergence rate on
the distance to the solution ‖s(k) − s∗‖22. This ends the proof
of Theorem 1.
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tion Algorithms I: Part 1: Fundamentals, vol. 305. Springer, 1996.
[29] Y. Nesterov, “A method of solving a convex programming problem with

convergence rate O(1/k2),” in Soviet Mathematics Doklady, vol. 27,
pp. 372–376, 1983.

[30] A. Beck and M. Teboulle, “Gradient-based algorithms with applications
to signal recovery,” Convex Optimization in Signal Processing and
Communications, 2009.

[31] D. H. Kim, E. Adalsteinsson, and D. M. Spielman, “Simple analytic
variable density spiral design,” Magn. Reson. Med., vol. 50, no. 1,
pp. 214–219, 2003.

[32] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[33] J. Keiner, S. Kunis, and D. Potts, “Using nfft 3—a software library for
various nonequispaced fast fourier transforms,” ACM Transactions on
Mathematical Software (TOMS), vol. 36, no. 4, p. 19, 2009.

[34] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[35] A. Florescu, E. Chouzenoux, J.-C. Pesquet, P. Ciuciu, and S. Ciochina,
“A majorize-minimize memory gradient method for complex-valued
inverse problems,” Signal Processing, vol. 103, pp. 285–295, 2014.

[36] Y. Huang, J. Paisley, Q. Lin, X. Ding, X. Fu, and X.-P. Zhang, “Bayesian
nonparametric dictionary learning for compressed sensing mri,” Image
Processing, IEEE Transactions on, vol. 23, no. 12, pp. 5007–5019, 2014.

[37] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger,
“SENSE: sensitivity encoding for fast MRI,” Magn. Reson. Med.,
vol. 42, pp. 952–962, Jul. 1999.

[38] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus,
J. Wang, B. Kiefer, and A. Haase, “Generalized autocalibrating partially
parallel acquisitions GRAPPA,” Magn. Reson. Med., vol. 47, pp. 1202–
1210, Jun. 2002.

[39] D. A. Feinberg, S. Moeller, S. M. Smith, E. Auerbach, S. Ramanna,
M. Gunther, M. F. Glasser, K. L. Miller, K. Ugurbil, and E. Yacoub,
“Multiplexed echo planar imaging for sub-second whole brain FMRI
and fast diffusion imaging,” PloS one, vol. 5, no. 12, p. e15710, 2010.

[40] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, “A projection algorithm
on measures sets,” submitted to Constructive Approximation, May 2015.

[41] D. M. Spielman, J. M. Pauly, and C. H. Meyer, “Magnetic resonance
fluoroscopy using spirals with variable sampling densities,” Magn.
Reson. Med., vol. 34, no. 3, pp. 388–394, 1995.

[42] R. T. Rockafellar, Convex analysis. No. 28, Princeton university press,
1997.
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